Plásmido bacteriano

Las enzimas de restricción

A lo largo de estas semanas estoy volviendo a trabajar con enzimas de restricción y, antes de publicar un artículo sobre ciertas aplicaciones, será buena idea explicar un poco sobre el tema.
Las enzimas (ó endonucleasas) de restricción son unas proteínas con acción catalítica que tienen la propiedad de reconocer secuencias cortas, de unos cuatro ó seis pares de bases en el ADN de doble hebra, y cortar en todos los puntos donde se encuentre dicha secuencia. Este lugar de corte se denomina diana de restricción. Cada enzima de restricción tiene una diana particular en el ADN. En la actualidad hay un amplísimo catálogo de enzimas de restricción (podéis ver un ejemplo en el listado de Takara) y los usos destinados son varios: para la realización de mapas físicos (hablamos de ADN, no de cordilleras XDD), huella genética ó fingerprinting, búsqueda de polimorfismos tipo SNPs, AFLPs, RFPLs, utilización en pasos previos a la clonación…etc. Y multitud de aplicaciones más específicas que hacen muy versátiles en su uso.
Con un ejemplo queda todo más claro: una enzima muy típica es Alu I que reconoce la secuencia AGTC y corta la doble hélice del ADN entre la Guanina y la Timina. Su actuación sería darse un paseo por toda la hebra de ADN en búsqueda de esa diana. En el momento que la encuentra, se ancla y corta, obteniéndose dos fragmentos. Si no hubiera esa secuencia diana, no corta y el fragmento de ADN de doble cadena que teníamos quedará igual que antes. Si os dais cuenta, es un buen método para diferenciar individuos. La variación de nucleótidos entre distintos individuos puede observarse de esta forma sin necesidad de secuenciar.
No se aplican estas enzimas a la totalidad del ADN genómico, ya que se obtendrían multitud de bandas que no se podrían distinguir bien. Se amplifican, mediante PCR, ciertos lugares específicos del ADN para que las dianas de restricción permitan obtener unos resultados claros para su posterior análisis.
Para los que trabajamos en un laboratorio esto que acabo de explicar es como usar el cuchillo en las comidas, pero ya he visto que hay cierto interés en ciertas aplicaciones de uso en el laboratorio y pronto haré una review de herramientas que facilitan el estudio mediante enzimas de restricción.
Por ahora, para que no sea un rollo lo que he explicado, os dejo con un vídeo (es una animación en 3D) sobre como actúa una enzima de restricción para clonar un fragmento de ADN. Recordad lo que es la clonación. Es una de las técnicas de ingeniería genética más comunes en los laboratorios de biología molecular. Se puede ver como la actuación de la enzima proporciona unos extremos en el plásmido (son moléculas de ADN extracromosómico circular o lineal que se replican y transcriben independientes del ADN cromosómico. Plásmido bacterianoEstán presentes normalmente en bacterias, y en algunas ocasiones en organismos eucariotas como las levaduras. Su tamaño varía desde 1 a 250 kb. El número de plásmidos puede variar, dependiendo de su tipo, desde una sola copia hasta algunos cientos por célula) que son complementarios al corte hecho a un fragmento de ADN que queremos insertar con la misma enzima de restricción. Por último serán unidos los extremos por otra enzima llamada ligasa. Así se puede incluir como si formara parte del plásmido y obtener copias idénticas del fragmento de interés al replicarse la bacteria.
[youtube]http://www.youtube.com/watch?v=yDGA8n1oJ5Q[/youtube]
Espero que os haya gustado.

Continue reading
Amplificación del ADN

Amplificación del ADN: la PCR

La amplificación del ADN mediante PCR no podía faltar en este blog. Ya he podido comentar como se trabaja con el material hereditario anteriormente. Mejor dicho, cómo se prepara para poder sacarle partido. Para poder tener varias copias de una región específica de ADN, se utiliza la tecnología de la Reacción en Cadena de la Polimerasa (Polimerase Chain Reaction = PCR).

Comienzos de la PCR

Este «gran invento» de la PCR se lo debemos al premiado Nobel en Química de 1993 Kary B. Mullis. Se le ocurrió realizar in vitro las condiciones necesarias para conseguir copias de fragmentos de ADN.

El ADN está en forma de doble hélice. Para que se pueda amplificar cada hebra, es necesario que se rompan los enlaces existentes para que se mantenga esa estructura. La idea consiste en reproducir ese vaivén molecular en un tubo de ensayo. Y así pudo hacerlo con la ayuda de todos los compañeros de la empresa en la que Kary B. Mullis trabajaba: Cetus Corporation.

Según nos puede contar la historia cercana de la Biología Molecular, el señor Mullis tuvo la brillante idea mientras conducía por las carreteras californianas a horas nocturnas. Observó el ir y venir de los coches cruzándose por las diferentes vías. De pronto, paró el coche y comenzó a pensar sobre el proceso de amplificación del ADN in vitro y como con tan sólo 20 ciclos podrían obtenerse la friolera de un millón de moléculas a partir de dos hebras de dicho ácido desoxirribonucleico.

Cuando volvió al trabajo lo puso en práctica. Funcionaba. La sencillez de todo el proceso hizo que hubiera muchos desconfiados dentro del ámbito de la Genética molecular. Poco tiempo después, otro premio nobel llamado Joshua Lederberg se quedó perplejo mirando el póster explicativo de Mullis con todo el proceso detallado. Le preguntó «¿funciona?», a lo que después espetó un «¿Por qué no se me habría ocurrido a mí?».

Amplificación del ADN paso a paso

Este proceso se realiza elevando la temperatura aproximadamente a 95 ºC durante un breve período de tiempo. Se denomina desnaturalización.

Posteriormente se necesita que los cebadores (oligonúcleótidos o secuencias cortas de ADN de unos 20 nucleótidos diseñadas para que flanqueen una zona específica de ADN que se quiera amplificar) se anclen a sus secuencias complementarias. L

a temperatura juega un papel importantísimo, puesto que cada pareja de cebadores (siempre se habla de parejas puesto que se debe tener un primer o cebador por un lado y otro por el otro para que se amplifique el mismo fragmento por ambos lados y producir la amplificación de la zona flanqueada) hibrida (se une al ADN) a una temperatura que, generalmente, puede variar entre 45 y 65 ºC. Aunque hay protocolos en los que se utilizan variaciones de temperatura para obtener un mejor rendimiento, pero esto lo comentaré en artículos posteriores.

Finalmente, se necesita una extensión de los fragmentos flanqueados por los primers gracias a la acción de una molécula llamada Polimerasa y que tiene su temperatura óptima de reacción a 72 ºC (aunque se utiliza también una temperatura óptima de 68 ºC, dependiendo de la casa que suministre la polimerasa).

Resumen de la PCR

Por lo tanto y en resumen se tiene en todo el proceso 3 fases:

  1. Desnaturalización.
  2. Hibridación de los cebadores.
  3. Extensión de los fragmentos. Al final de todo el programa, se introduce una fase de extensión más larga para que se termine de obtener un mayor número de copias.

Todo este proceso se realiza en los termocicladores: las reacciones se preparan en frío y los tubos o placas de reacción se depositan en estos aparatos que son programados para realizar los ciclos que he explicado antes. Un esquema de programa es el que pongo en la imagen siguiente:
amplificación del ADN
En cada ciclo de amplificación del ADN, el fragmento diana aumentará en el número de copias de forma exponencial. Esto provoca que, al final de un programa básico, se obtengan aproximadamente hasta 100 millones de copias del fragmento deseado.

Consideraciones sobre la amplificación del ADN por PCR

Las variaciones de tiempo dependen principalmente de la longitud de los fragmentos. Cuanto más tiempo mayor es el fragmento a amplificar. La clave de una buena eficiencia depende de los diseños de las reacciones de PCR que se deben ajustar a las condiciones de cada reacción.

Al principio, las polimerasas que se utilizaban no eran termorresitentes. Esto provocaba que, en cada ciclo, había que añadir polimerasa para que se pudiera extender la amplificación del ADN. Ahora se utilizan polimerasas que permiten ser añadidas en la preparación de las reacciones y se puede olvidar de ello.

No más importante, cuidado con el material a ser utilizado: el calibrado de las micropipetas es esencial y la «limpieza» del resto de materiales y lugar de trabajo pueden ser clave.

Me gustaría explicarlo todo: como se diseñan los cebadores, la realización de la reacción de PCR y todos los componentes, los estudios que se pueden derivar…etc, pero igual no acabo con el artículo y creo que la base sí que la he plasmado.

Una cosa es clara: sin la propia evolución en los conocimientos sobre el ADN y su comportamiento no se podría haber llegado a la situación de Mullis. Personas como James D. Watson, Francis Crick, Rosalind Franklin, Arthur Kornberg, H. Gobind Khorana o Thomas D. Brock tienen en sus espaldas haber sembrado poco a poco la información que ayudó a Kary B. Mullis a desarrollar su idea (que puede tener cierta controversia con el trabajo presentado por Kjell Kleppe).

Información adicional sobre la amplificación del ADN por PCR

Lo mejor es partir del propio escrito original de Kary B. Mullis. Después de generar las correspondientes patentes se puede encontrar por la red un par de documentos datados en 1986 y 1987 respectivamente con los títulos «Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction» y «Specific Synthesis of DNA in vitro via a Polymerase-Catalyzed Chain Reaction».

Otra lectura que recomiendo encarecidamente es mi monográfico dedicado a la PCR que escribí en su momento para Journal of Feelsynapsis. Como la revista se ha reconvertido en Principia, cualquiera que desee leerlo puede pedirme una copia que se la enviaré con honores.

Este vídeo explica todo bastante bien con un inglés muy fácil de seguir. Incluso se observan los fragmentos que no son específicos (que no se buscan amplificar pero que se obtienen de todas formas por la hibridación de los primers)
[youtube]http://www.youtube.com/watch?v=eEcy9k_KsDI[/youtube]
Referencia del vídeo: Essential Cell Biology, 3rd Edition. Alberts, Bray, Hopkin, Johnson, Lewis, Raff, Roberts, & Walter

Si se tuviera alguna duda al respecto, los comentarios e email están a disposición de cualquiera (y abiertos las 24 horas del día los 365 días del año).

Escuchando: el sonido de las campanas de Papá Noël…JOJOJO!!

Continue reading

El ADN

El ácido desoxirribonucléico ó ADN es una molécula de tipo polímero ya que está compuesta por una cadena de monómeros unidos entre sí. Cada monómero se llama nucleótido, que a su vez está constituído por tres componentes: una base nitrogenada, una pentosa (azúcar de cinco carbonos) y un fosfato.
La base del código genético la dictan las bases nitrogenadas. Son cuatro en el ADN Adenina y Guanina (A y G), que son bases púricas y Citosina y Timina (C y T), que son bases pirimidínicas. En el ARN la Timina deja lugar a la base llamada Uracilo (U). Por lo tanto existen cinco tipos de bases nitrogenadas. La combinación de las bases nitrogenadas provoca la generación del código genético. Por eso se pueden ver que las secuencias de ADN son del tipo «AACTGGGTCATGCGAA».

Estructura molecular del ADN
Estructura molecular del ADN

A forma de repaso, quería recalcar que las bases nitrogenadas se unen a los azúcares (ribosas en el caso del ADN) y dan lugar a nucleósidos. Posteriormente, esos nucleósidos al unirse los fosfatos dan lugar a los nucleótidos. Era para recordar ese anuncio de una crema que anunciaba el descubrimiento de una molécula llamada Adenosina. Es para reirse. Que es la Adenosina más que el nucleósido que tiene la Adenina como base nitrogenada. Pero, qué se le va a hacer. Finalmente, el ADN (se puede extrapolar igualmente al ARN si se recuerda que las Timinas son Uracilos) no es más que la polimerización de nucleótidos que se unen mediante enlaces fosfato. A lo largo de la hebra van quedando los residuos de fosfato, con carga negativa, que confieren el carácter ácido a la molécula.
Hasta ahora se ha hablado de la formación de una hebra de ADN. Pero la forma básica de nuestro material hereditario no se encuentra un una sola hebra. Dos de estas hebras, que son complementarias por las uniones entre las bases púricas y las pirimidínicas (A con T y C con G), forman la doble hélice de ADN. Tiene un tamaño de 20 Armtrongs de diámetro y da una vuelta completa cada 34 Armstrongs.
Doble hélice de ADN
Doble hélice de ADN
Hay otras formas de hélice, pero esta es la forma natural y estable que se encuentra en la mayoría de las células. Posteriormente esta doble hélice sufrirá empaquetamientos sucesivos que daran lugar a su compresión y formación de los distintos cromosomas.
Bueno, espero que haya sido de utilidad. Si tenéis dudas, comentadlas e intentaré aclararlas todas.

Continue reading

Manipulación de muestras de ADN

A la hora del manejo de las muestras de ADN hay que tener varios factores en cuenta: primero la esterilidad y pureza del lugar donde se depositan. Evidentemente las muestras de ADN no se almacenan en un tubo cualquiera. El vial destinado para ello debe ser estéril y haber sido autoclavado previamente. Parece una redundancia, pero no es así. Los viales vienen de las empresas comercializadoras con un certificado de esterilidad. En un laboratorio suele haber un grupo amplio de investigadores. Cada uno con sus manías y sus protocolos de esterilización. Lo usual es que se repartan viales en otros recipientes para que cada uno tenga su material. Y esos contenedores deben ser de un material, como el vidrio, que resista altas temperaturas. De este modo no hay que preocuparse tampoco de cómo han sido rellenados los recipientes con los viales ya que, antes de pasar al investigador, son autoclavados: esterilizados mediante la acción de vapor de agua a cierta presión durante un tiempo determinado.
Así también pasan por el mismo proceso todos los materiales desechables que se utilicen como puntas de micropipetas, tubos de ensayo, probetas u otros recipientes y viales.
Algo que no he comentado es la situación del personal del laboratorio. Se deben usar guantes en todo momento. Esto es debido a que en las manos tenemos unas enzimas llamadas DNAsas que digieren el ADN. El simple contacto de los viales y/o las muestras con las DNAsas sería fatal. Otra precaución que se toma siempre es mantener las muestras en frío siempre y cuando los protocolos de manipulación no indiquen lo contrario. El recipiente de poliestireno relleno de hielo picado es otro compañero más en el laboratorio.
Dependiendo del tipo de muestras y del nivel de purificación que se necesite para su procesado y estudios posteriores, hay que almacenar el ADN diluído desde simple Agua estéril y filtrada (Agua MiliQ) hasta en buffers (soluciones tamponadas) específicos que permitan una mayor eficiencia en el análisis. También puede que necesiten seguir algún protocolo de purificación mediante técnicas tradicionales o con kit especiales para ello.
Por último, el almacenamiento de las muestras debe realizarse a 4ºC si se van a utilizar en periodos de tiempo medio (unas semanas) o a -20ºC si se piensa almacenar para análisis no a corto plazo. Nunca se deben congelar y descongelar muy sucesivamente las muestras porque los cristales de hielo formados en la congelación pueden romper las hebras de ADN, empeorando rendimientos.
Seguiré con más lecciones de laboratorio pronto.

Escuchando:

Continue reading

Extracción de ADN

Lo más habitual en cualquier laboratorio de genética es extraer el ADN de cualquier tejido o superficie. En mi caso he podido extraer ADN de hojas de plantas, de semillas, de tejido de lagarto, de lodo, de sangre…e incluso de los compuestos obtenidos de un tanque de fermentación.
Hace unos años era necesario preparar para cada ocasión una serie de tampones o buffers para poder extraer el material hereditario. Y cada disolución tenía que prepararla cada uno. Ahora todo es muy sencillo. Existen kits de extracción para cada tipo de tejido o muestra a analizar. La utilización de estos kits tienen sus pros y sus contras: generalmente la eficiencia de la extracción (la cantidad de ADN obtenido por extracción) suele ser bastante mayor con los métodos tradicionales. Sin embargo, la pureza del ADN aislado es mayor cuando se usan los kits. Dependiendo para qué se vaya a utilizar el ADN y el tipo de estudio, será mejor tener más ADN y menos puro ó viceversa. Las nuevas tecnologías suelen «funcionar» mejor cuanto más limpia sea la extracción, ya que en muchas ocasiones recomiendan purificarlo.

kit de extracción de ADN
kit de extracción de ADN

A modo informativo y dependiendo de la muestra, el tiempo para extraer ADN oscila entre 30 minutos y una hora. Cuantas más muestras se tengan a extraer a la vez, mayor será el tiempo.
Cuando ya se tiene el vial con el ADN disuelto en el tampón de elución, siempre hay que hacer una cuantificación. Con aparatos como el NanoDrop, la cantidad de ADN utilizado para cuantificar es de tan sólo 1 microlitro. Para hacerse una idea, es poco más de lo que ocupa la impresión del punto en el teclado de un ordenador. Hay ocasiones en que existen problemas con las mediciones y se opta por seguir el método tradicional que consiste en hacer un gel de agarosa a una concentración del 0,8% y realizar una electroforesis de todas las extracciones. Posteriormente, la imagen que se obtiene en el transiluminador de rayos ultravioleta (siempre que se utilicen marcajes como el bromuro de etidio o SybrGreen) se utiliza para hacer un cálculo estimado de la concentración de ADN gracias a la extrapolación que nos permite el marcador de fragmentos de ADN (un marcador de ADN en escalera (DNA ladder) no es más que un fragmento de ADN el cuál ha sido cortado de forma que se obtienen bandas de un tamaño conocido), ya que sí que sabremos la concentración cargada en el gel de ese marcador.
ejemplo de gel de electroforesis en gel de agarosa. Las concentraciones de las muestras se observan en microgramos/microlitro
ejemplo de gel de electroforesis en gel de agarosa. Las concentraciones de las muestras se observan en microgramos/microlitro

Bueno, aquí he dejado unas nociones básicas de una de las primeras partes del trabajo en un laboratorio de Genética. Espero que os haya gustado.

Escuchando: canciones en Jamendo.com

Continue reading

Hablando con Pilar Iniesta

De nuevo un podcast más que interesante en «Hablando con científicos» de cienciaes.com. En esta ocasión la directora del Departamento de Bioquímica y Biología Molecular II en la Universidad Complutense de Madrid hace un repaso de la molécula más importante a nivel molecular (desde mi punto de vista): el ADN. De forma clara y concisa se explica los pormenores del estudio del ácido desoxirribonucleico y el estudio del que derivó el nuevo premio Nobel de medicina. Bueno. No quiero entrar al trapo. «Nobel en Medicina». Espero que en el futuro se de cuenta el mundo entero de las diferencias entre Biología y Medicina. La incultura llega hasta la cima de los cultos.

Leer más…

Escuchando: Hablando con científicos- Pilar Iniesta

Continue reading

Nueva técnica de detección de daño genético en espermatozoides

Hay buenas noticias para la supervivencia de la especie. En el trabajo realizado en la Unidad de Genética del Departamento de Biología de la Universidad Autónoma de Madrid, se describe un nuevo método para evaluar la fragmentación del ADN del espermatozoide humano. Esta técnica podría tener importantes aplicaciones en el campo de la fertilidad humana y la patología andrológica.
La base de la técnica que utilizan es la siguiente: los espermatozoides se lisan con detergentes y sales en altas concentraciones y el ADN liberado se somete a una electroforesis. Por la acción de un campo eléctrico, los fragmentos de ADN roto, se desplazan y generan una imagen parecida a un cometa, con un núcleo y una cola de fragmentos. La cantidad de daño en el ADN se cuantifica midiendo la longitud y la densidad de la cola del cometa. Cuanto más larga y/o densa es esta cola, mayor es el daño de ADN.

Leer más…

Continue reading

La Mitosis

La mitosis es la división celular con la repartición del material hereditario en células eucariotoas. Las fáses principales son: Interfase, Profase, Anafase, Telofase, Metafase y Cariocinesis.
Esquema de la Mitosis
La división de las células eucarióticas es parte de un ciclo vital continuo, el ciclo celular, en el que se distinguen dos períodos mayores, la interfase, durante la cual se produce la duplicación del ADN, y la mitosis, durante la cual se produce el reparto idéntico del material antes duplicado. La mitosis es una fase relativamente corta en comparación con la duración de la interfase.

Interfase

La célula está ocupada en la actividad metabólica preparándose para la mitosis (las próximas cuatro fases que conducen e incluyen la división nuclear). Los cromosomas no se disciernen claramente en el núcleo, aunque una mancha oscura llamada nucleolo, puede ser visible. La célula puede contener un centrosoma con un par de centriolos (o centros de organización de microtúbulos en los vegetales) los cuales son sitios de organización para los microtúbulos.

Profase

Profase: Los dos centros de origen de los microtúbulos (en verde) son los centrosomas. La cromatina ha comenzado a condensarse y se observan las cromátidas (en azul). Las estructuras en color rojo son los cinetocoros. (Micrografía obtenida utilizando marcajes fluorescentes).
Es la fase más larga de la mitosis. Se produce en ella la condensación del material genético (ADN, que en interfase existe en forma de cromatina), para formar unas estructuras altamente organizadas, los cromosomas. Como el material genético se ha duplicado previamente durante la fase S, los cromosomas replicados están formados por dos cromátidas, unidas a través del centrómero por moléculas de cohesinas.
Uno de los hechos más tempranos de la profase en las células animales es duplicación del centrosoma; los dos centrosomas hijos (cada uno con dos centriolos) migran entonces hacia extremos opuestos de la célula. Los centrosomas actúan como centros organizadores de microtúbulos, controlando la formación de unas estructuras fibrosas, los microtúbulos, mediante la polimerización de tubulina soluble. De esta forma, el huso de una célula mitótica tiene dos polos que emanan microtúbulos.
En la profase tardía desaparece el nucléolo y se desorganiza la envoltura nuclear.

Prometafase

Prometafase: La membrana nuclear se ha disuelto, y los microtúbulos (verde) invaden el espacio nuclear. Los microtúbulos pueden anclar cromosomas (azul) a través de los cinetocoros (rojo) o interactuar con microtúbulos emanados por el polo opuesto.
La membrana nuclear se desensambla y los microtúbulos invaden el espacio nuclear. Esto se denomina mitosis abierta, y ocurre en una pequeña parte de los organismos multicelulares. Los hongos y algunos protistas, como las algas o las tricomonas, realizan una variación denominada mitosis cerrada, en la que el huso se forma dentro del núcleo o sus microtúbulos pueden penetrar a través de la membrana nuclear intacta. Cada cromosoma ensambla dos cinetocoros hermanos sobre el centrómero, uno en cada cromátida. Un cinetocoro es una estructura proteica compleja a la que se anclan los microtúbulos. Aunque la estructura y la función del cinetocoro no se conoce completamente, contiene varios motores moleculares, entre otros componentes. Cuando un microtúbulo se ancla a un cinetocoro, los motores se activan, utilizando energía de la hidrólisis del ATP para «ascender» por el microtúbulo hacia el centrosoma de origen. Esta actividad motora, acoplada con la polimerización/despolimerización de los microtúbulos, proporcionan la fuerza de empuje necesaria para separar más adelante las dos cromátidas de los cromosomas.
Cuando el huso crece hasta una longitud suficiente, los microtúbulos asociados a cinetocoros empiezan a buscar cinetocoros a los que anclarse. Otros microtúbulos no se asocian a cinetocoros, sino a otros microtúbulos originados en el centrosoma opuesto para formar el huso mitótico. La prometafase se considera a veces como parte de la profase.

Metafase

A medida que los microtúbulos encuentran y se anclan a los cinetocoros durante la prometafase, los centrómeros de los cromosomas se congregan en la «placa metafásica» o «plano ecuatorial», una línea imaginaria que es equidistante de los dos centrosomas que se encuentran en los dos polos del huso. Este alineamiento equilibrado en la línea media del huso se debe a las fuerzas iguales y opuestas que se generan por los cinetocoros hermanos. El nombre «metafase» proviene del griego μετα que significa «después.»
Dado que una separación cromosómica correcta requiere que cada cinetocoro esté asociado a un conjunto de microtúbulos (que forman las fibras cinetocóricas), los cinetocoros que no están anclados generan una señal para evitar la progresión prematura hacia anafase antes de que todos los cromosomas estén correctamente anclados y alineados en la placa metafásica. Esta señal activa el checkpoint de mitosis.

Anafase

Cuando todos los cromosomas están correctamente anclados a los microtúbulos del huso y alineados en la placa metafásica, la célula procede a entrar en anafase (del griego ανα que significa «arriba», «contra», «atrás» o «re-«).
Entonces tienen lugar dos sucesos. Primero, las proteínas que mantenían unidas ambas cromatidas hermanas (las cohesinas), son cortadas, lo que permite la separación de las cromátidas. Estas cromátidas hermanas, que ahora son cromosomas hermanos diferentes, son separados por los microtúbulos anclados a sus microtúbulos al desensamblarse, dirigiéndose hacia los centrosomas respectivos.
A continuación, los microtúbulos no asociados a cinetocoros se alargan, empujando a los centrosomas (y al conjunto de cromosomas que tienen asociados) hacia los extremos opuestos de la célula. Este movimento parece estar generado por el rápido ensamblaje de los microtúbulos. Estos dos estadios se denominan a veces anafase temprana y anafase tardía. La anafase temprana viene definida por la separación de cromátidas hermanas, mientras que la tardía por la elongación de los microtúbulos que produce la separación de los centrosomas. Al final de la anafase, la célula ha conseguido separar dos juegos idénticos de material genético en dos grupos definidos, cada uno alrededor de un centrosoma.

Telofase

La telofase (del griego τελος, que significa «finales») es la reversión de los procesos que tuvieron lugar durante profase y prometafase. Durante la telofase, los microtúbulos no unidos a cinetocoros continúan alargándose, estirando aún más la célula. Los cromosomas hermanos se encuentran cada uno asociado a uno de los polos. La membrana nuclear se reforma alrededor de ambos grupos cromosómicos, utilizando fragmentos de la membrana nuclear de la célula original. Ambos juegos de cromosomas, ahora formando dos nuevos núcleos, se descondensan de nuevo en cromatina. La cariocinesis ha terminado, pero la división celular aún no está completa.

Citocinesis

La citocinesis es un proceso independiente, que se inicia simultáneamente a la telofase. Técnicamente no es parte de la mitosis, sino un proceso aparte, necesario para completar la división celular. En las células animales, se genera un surco de escisión (cleavage furrow) que contiene un anillo contráctil de actina en el lugar donde estuvo la placa metafásica, estrangulando el citoplasma y aislando así los dos nuevos núcleos en dos células hijas. Tanto en células animales como en plantas, la división celular está dirigida por vesículas derivadas del aparato de Golgi, que se mueven a lo largo de los microtúbulos hasta la zona ecuatorial de la célula. En plantas esta estructura coalesce en una placa celular en el centro del fragmoplasto y se desarrolla generando una pared celular que separa los dos núcleos. El fragmoplasto es una estructura de microtúbulos típica de plantas superiores, mientras que algunas algas utilizan un vector de microtúbulos denominado ficoplasto durante la citocinesis. Al final del proceso, cada célula hija tiene una copia completa del genoma de la célula original. El final de la citocinesis marca el final de la fase M.

Continue reading

Uso de cookies

Este sitio web utiliza cookies para que usted tenga la mejor experiencia de usuario. Si continúa navegando está dando su consentimiento para la aceptación de las mencionadas cookies y la aceptación de nuestra política de cookies, pinche el enlace para mayor información. ACEPTAR

Aviso de cookies